Sydney NSW, Australia
For your information
2020-08-07T21:54:00.0000000Z
   0
How plants distinguish beneficial from harmful microbes Date:

ScienceDaily
https://www.sciencedaily.com/releases/2020/08/200807093758.htm

Source:
Aarhus University
Summary:
Plants recognize beneficial microbes and keep harmful ones out, which is important for healthy plants production and global food security. Scientists have now discovered how legumes use small, well-defined motifs in receptor proteins to read molecular signals produced by both pathogenic and symbiotic microbes. These remarkable findings have enabled the researchers to reprogram immune receptors into symbiotic receptors, which is the first milestone for engineering symbiotic nitrogen-fixing symbiosis into cereal crops.
Legume plants fix atmospheric nitrogen with the help of symbiotic bacteria, called Rhizobia, which colonize their roots. Therefore, plants have to be able to precisely recognize their symbiont to avoid infection by pathogenic microbes. To this end, legumes use different LysM receptor proteins located on the outer cell surface of their roots. In the study published in Science, an international team of researchers led by Aarhus University show that pathogenic (chitin) or symbiotic signalling molecules (Nod factors) are recognized by small molecular motifs on the receptors that direct the signalling output towards either antimicrobial defence or symbiosis.

All land plants have LysM receptors that ensure detection of various microbial signals, but how a plant decides to mount a symbiotic or an immune response towards an incoming microbe is unknown. "We started by asking a basic and, maybe at start, naïve question: Can we identify the important elements by using very similar receptors, but with opposing function as background for a systematic analysis?" says Zoltán Bozsoki. "The first crystal structure of a Nod factor receptor was a breakthrough. It gave us a better understanding of these receptors and guided our efforts to engineer them in plants." Kira Gysel adds.

Read on: https://www.sciencedaily.com/releases/2020/08/200807093758.htm

Symbiosis
Rhizobia

No responses yet...