ScienceDaily
https://www.sciencedaily.com/releases/2021/05/210527155402.htm
Of course, the existence of such chemical defense mechanisms in plants is a problem, which herbivorous insects must counter. One way that insects have evolved to overcome these problems is by forming partnerships with bacteria. For example, the digestive oral secretions of the Colorado potato beetle (Leptinotarsa decemlineata) include bacteria that can suppress the defense mechanisms of the tomato plants that the beetle commonly feeds on. The beetle and the bacteria have thus achieved "symbiosis," which is a term that biologists use to describe a mutually beneficial partnership: the beetle provides the bacteria with a comfortable environment inside its mouth and other secretory organs, and the bacteria help the beetle consume nutrients from tomato plants.
To Prof. Gen-ichiro Arimura of Tokyo University of Science, this is a fascinating result: "Although it is well known that symbiotic microorganisms in animals (especially bacteria in the intestines of herbivores such as pandas and cows) affect biological activities such as digestion and reproduction, the fact that they affect the prey (i.e., the plants) is not so well known." In other words, the fact that the insect's bacterial partners work to alter biochemical processes within the living plant before it is eaten is a matter of considerable interest to scientists.
Prof. Arimura and his research team, in collaboration with Okayama University, wondered whether such partnerships with bacteria may apply in the case of the insect Spodoptera litura, the larvae of which are major pests that commonly damage crops in Asia.
Read on: https://www.sciencedaily.com/releases/2021/05/210527155402.htm